Specific Binding of a Short miRNA Sequence by Zinc Knuckles of Lin28: A Molecular Dynamics Simulation Study

Abstract

Protein Lin28 recognizes pre-let-7 microRNAs (miRNAs) through direct interactions between its zinc-knuckle type zinc-finger (ZnF) domains and the terminal loop of pre-let-7, resulting in the inhibition of the synthesis of mature let-7 miRNAs. Despite the physiological importance, the involved conformational changes and energetic factors contributing to the binding affinity and specificity remain unclear. We conducted molecular dynamics (MD) simulations in conjunction with molecular mechanics/generalized born surface area (MM/GBSA) and energy decomposition calculations to investigate the RNA binding-induced conformational changes of the ZnFs and the residual level energetic factors that influence the binding affinity and specificity. We showed that the binding of the RNA results in the inter-domain conformational changes of the two ZnF domains, including changes of the spatial relationships of several nucleobase-binding amino acids. We also observed mutation-induced weakening of the affinity of the Lin28–pre-let-7 binding, which reveals the importance of the stacking interactions between the side-chains of Tyr140, His148, His162 and the bases of nucleic acid G2 and G5 in the specific recognition of pre-let-7 by the ZnFs of Lin28.

Journal
Journal of Theoretical and Computational Chemistry
Date
Volume
12
Issue
8
Page
1341015